
 The OpenGL ® ES 2.0 Programming Guide

OpenGL ES 2.0 on the iPhone – eChapter DRAFT Page: 1

OpenGL ES 2.0 on the iPhone 3G S
Dan Ginsburg

On June 8
th
, 2009 at the Apple Worldwide Developer Conference (WWDC) the new iPhone

3G S was announced. Apple confirmed that this new generation of iPhone would support

OpenGL ES 2.0. Meanwhile, Apple made available to developers a seed version of the iPhone

SDK 3.0 that includes support for OpenGL ES 2.0. The new iPhone SDK allows developers to

write application for the iPhone 3G S that use OpenGL ES 2.0 for rendering 3D graphics.

The introduction of the iPhone 3G S to the market marks a major milestone in the adoption

of OpenGL ES 2.0. This new iPhone will put the power of programmable 3D graphics in the

hands of millions of consumers. With this power comes the challenge to developers to get the

most out of the programmable hardware by developing high-performance shader-based 3D

applications. The OpenGL ES 2.0 Programming Guide was written with exactly this goal in

mind. The book covers every aspect of the API along with various advanced 3D rendering

techniques to help you get the most out of OpenGL ES 2.0.

Upon first publication of the OpenGL ES 2.0 Programming Guide, the only implementations

of OpenGL ES 2.0 that were available were PC-based emulators. While these emulators are very

useful in developing the relevant OpenGL ES code for an application, many of the platform

details that developers encounter working with real-world devices are missed. With the

availability of the iPhone SDK 3.0, it now possible to develop OpenGL ES 2.0 applications for

one of the world's most popular handheld devices.

The purpose of this chapter is to help you get started developing OpenGL ES 2.0 on the

iPhone 3G S. Throughout the book, we provided a variety of sample code to demonstrate various

techniques and rendering functionality in OpenGL ES 2.0. We have ported all of this sample

code from the previous chapters in the book to run on the iPhone 3G S. This chapter details what

was involved in doing this port and what information you need to know to get up and running to

develop OpenGL ES 2.0 applications for the iPhone 3G S.

Getting Started with the iPhone SDK 3.0

The iPhone 3.0 SDK is available from the Apple developer website at

http://developer.apple.com/. As of this writing, the iPhone SDK 3.0 requires that you have an

Intel-based Mac running Mac OS X 10.5.7 or later. The iPhone SDK 3.0 includes everything

you will need to get started with developing OpenGL ES 2.0 applications including the Xcode

IDE as well as the iPhone Simulator. The iPhone Simulator allows you to run, test, and debug

your iPhone applications directly on the Mac. The iPhone Simulator provides support for

running both OpenGL ES 1.1 and OpenGL ES 2.0-based applications.

Getting the Sample Code for iPhone

In order to aid you in using the content of the OpenGL ES 2.0 Programming Guide on the

iPhone platform, we have ported all of the C-based sample code to the iPhone SDK 3.0. The

updated code can be downloaded from the book website at http://www.opengles-book.com. The

 The OpenGL ® ES 2.0 Programming Guide

OpenGL ES 2.0 on the iPhone – eChapter DRAFT Page: 2

package on the book website includes all of the sample code along with Xcode projects for

building each of the samples.

Throughout the book, we developed an ES Utility Framework that provides basic common

functionality that is needed by most OpenGL ES 2.0 applications. This framework includes

functions for generating simple geometry, compiling and linking shaders, computing modelview

and projection transformation matrices, and creating rendering surfaces.

The ES Utility Framework that was developed for the original book has been adapted to run

on the iPhone. Several of the function calls that were used for setting up EGL

(esCreateWindow()) and setting up callbacks (esRegisterDrawFunc(), esRegisterUpdateFunc(),

etc.) did not map particularly well to the iPhone and were deprecated. However, all of the code

that was relevant to creating 3D geometry, transformations, and loading shaders/programs was

ported without modification. These functions will be especially helpful to developers migrating

from the OpenGL ES 1.1 fixed-function pipeline in generating equivalent transformation

matrices.

Building the Sample Code

As with the Windows-based version of the sample code, the ES Utility Framework is built

into a static library that each of the individual samples links against. Each sample contains only

the relevant rendering and setup code. The project is organized in the following directory

structure:

• /Common – holds the source code and Xcode project for building the ES Framework

library (called libCommon.a)

• /Chapter_X – holds each of the individual sample code along with the Xcode projects

In order to build any of the sample programs, the first thing you will need to do is build the

ES Utility Framework located in the Common/ folder. Assuming you have installed the iPhone

SDK 3.0, the only thing you need to do is open the Common.xcodeproj project and do a build.

This will generate the libCommon.a file that contains the ES Utility Framework. All of the other

sample code is setup to link against this library.

The next step is to simply open any of the individual sample projects in Xcode. For

example, to build the MipMap2D texture sample from Chapter 9, simply open

Chapter_9/MipMap2D/MipMap2D.xcodeproj in and then click Build and Go. The sample will

come up in the iPhone Simulator as pictured in Figure 1.

 The OpenGL ® ES 2.0 Programming Guide

OpenGL ES 2.0 on the iPhone – eChapter DRAFT Page: 3

 Figure 1 – MipMap2D sample on iPhone Simulator

 That's all there is to getting the samples to run on the iPhone. The iPhone SDK 3.0

makes getting up and running very simple which allows you to focus on the relevant graphics

code of each sample.

Porting the Sample Code to the iPhone

The process of porting the sample code from the book to the iPhone highlights some of the

unique features of the iPhone. In particular, some of the unique features of the development

environment include:

• The use of Objective C

• The process of creating an EGL rendering context using the EAGLContext.

• Detection of device capabilities and creating an OpenGL ES 2.0 context

• The use of a framebuffer object as the primary rendering surface

 The OpenGL ® ES 2.0 Programming Guide

OpenGL ES 2.0 on the iPhone – eChapter DRAFT Page: 4

Once you have created and setup a rendering context, programming with OpenGL ES 2.0 on

the iPhone is identical to any other platform. However, there are some unique aspects of the

platform that are worth understanding before jumping into the code.

Objective C

Apple utilizes the Objective C language within their development framework. Objective C is

an object oriented language that is a superset of C. Files that are in Objective C have the .m file

extension. There are a number of great tutorials online that will help you understand the

fundamental differences between C/C++ and Objective C. As Objective C is the primary

language used on the iPhone, you will definitely want to get an understanding of it before

moving too far in development.

One of the great things about Objective C is because it is a strict superset of C, any code

written in C will also compile with the Objective C compiler. The sample code in our book was

all written in C so this made it quite easy to port all of the code. The main changes to the code

were around the event system and EGL initialization. By and large, the core of each sample

ported to the platform without modification.

Creating an OpenGL ES 2.0 Rendering Surface

In Chapter 3 of the OpenGL ES 2.0 Programming Guide, we cover in detail how to create a

rendering surface and context using EGL. We developed the esCreateWindow() function that

uses EGL to initialize a rendering surface and create a context. On the iPhone, Apple provides

their own framework for initializing with EGL and abstracts this from the developer. This

framework is documented in the iPhone SDK.

In Xcode, there is a project template for an iPhone OpenGL ES Application. This template

creates an object named EAGLView in the files EAGLView.m and EAGLView.h. This object sub-

classes the UIView object and implements most of the basic necessities for getting up and

running with an OpenGL ES application. One change from the template that is necessary is to

specifically request an OpenGL ES 2.0 context rather than an OpenGL ES 1.1 context. Unlike

other platforms, the iPhone SDK will allow a program to compile and link with calls to both

OpenGL ES 1.1 and OpenGL ES 2.0 functions. However, in order for these calls to actually be

able to execute, one must request the appropriate context. To request an OpenGL ES 2.0 context

in the EAGLView class that gets generated, we use the following code.

 context = [[EAGLContext alloc] initWithAPI:kEAGLRenderingAPIOpenGLES2];

Note that in order to write an application that will safely run on either the iPhone 3G or

iPhone 3G S, one must do proper runtime checks to detect device capabilities. As OpenGL ES

2.0 is only available on the iPhone 3G S, it is necessary to have an OpenGL ES 1.1 fallback path

to run on previous generation iPhone. The call to initWithAPI will return nil on devices which

do not support OpenGL ES 2.0. In this case, an OpenGL ES 1.1 context can be created and a

fallback rendering path executed.

In addition to creating an OpenGL ES 2.0 context, the application will also need to include

the OpenGL ES 2.0 header files (rather than the OpenGL ES 1.1 headers):

 The OpenGL ® ES 2.0 Programming Guide

OpenGL ES 2.0 on the iPhone – eChapter DRAFT Page: 5

 #import <OpenGLES/ES2/gl.h>

 #import <OpenGLES/ES2/glext.h>

After making these changes, the default drawView method that draws an OpenGL ES 1.1

spinning cube can be modified to do your own OpenGL ES 2.0 rendering. This was the approach

that was taken to creating the samples in the book. The default EAGLView class was modified to

create an OpenGL ES 2.0 context and callback into the C sample code from the book.

Using a Framebuffer Object for Rendering

One other unique aspect to the iPhone SDK is that rendering is done to an offscreen

framebuffer object. The full details of creating and rendering with framebuffer objects is

covered in Chapter 12 of the book. On most platforms, one creates a displayable window surface

using EGL and then uses eglSwapBuffers to present the surface to the screen. This was the

approach that was taken by the sample code in the OpenGL ES 2.0 Programming Guide.

However, on the iPhone an offscreen renderbuffer is used for all rendering and then presented to

the screen using EAGLContext presentRenderbuffer method. It was a small change to the sample

code to drop the call to eglSwapBuffers and wrap the main drawing function for each sample

with the code to bind and present the renderbuffer.

Transitioning from OpenGL ES 1.1 to OpenGL ES 2.0

For developers that are currently writing applications that target OpenGL ES 1.1 on the

iPhone 3G, the move to OpenGL ES 2.0 may be a bit difficult at first. While OpenGL ES 2.0 is

significantly more powerful than OpenGL ES 1.1, it also pushes the responsibility to the

developer to implement the vertex transformation and fragment shading pipeline. This means

becoming intimately familiar with the fixed-function vertex and fragment pipelines in OpenGL

ES 1.1 and translating those pipelines into OpenGL ES 2.0 shaders.

The OpenGL ES 2.0 Programming Guide was written with this type of developer in mind. In

Chapter 8 Vertex Shaders, we provide a shader that implements the entire OpenGL ES 1.1 fixed-

function pipeline (Example 8-8). This includes vertex transformation, texture coordinate

generation, lighting, and vertex fog. In Example 8-6, we also show how to implement matrix

palette skinning in a vertex shader. In Chapter 10 Fragment Shaders, we show how fixed-

function state from OpenGL ES 1.1 can be translated into fragment shader code. In particular,

we cover the texture environment, multitexturing, fog, alpha test, and user-clip planes.

In addition to these chapters, the ES Utility Framework provides functions that do the

equivalent of glRotate, glTranslate, and glScale. It also contains functions for generating the

perspective transformation matrix and the modelview matrix. These functions should be helpful

to a developer that has relied on the fixed-function API of OpenGL ES 1.1 for generating

transformation matrices.

Conclusion
The iPhone 3G S brings OpenGL ES 2.0-programmable hardware into millions of

consumers’ hands. The OpenGL ES 2.0 Programming Guide covers everything in the API to

help you render efficient shader-based 3D graphics on the iPhone 3G S. In this chapter we

covered the basics of how to get up and running with developing OpenGL ES 2.0 applications for

 The OpenGL ® ES 2.0 Programming Guide

OpenGL ES 2.0 on the iPhone – eChapter DRAFT Page: 6

the iPhone 3G S. Throughout the OpenGL ES 2.0 Programming Guide, we developed a number

of C-based samples to demonstrate the use of various features of the API. In order to help you

utilize the content of the book on the iPhone, we ported these samples to the iPhone SDK which

you can download off of the book website. In addition, we covered some of the unique aspects

of programming with OpenGL ES 2.0 on the iPhone.

